

m:explore - datasheet

m:explore - our next generation ultra-wideband (UWB) sensor. The versatile device is using our innovative m-Sequence pseudo-noise design. Suitable for many applications, such as

- high resolution short range radar
- vector network analyser
- time domain reflectometer
- Coherent MIMO measurements by coupling multiple devices
- impedance spectroscopy

The compact device includes 1 UWB baseband transmitter and 2 UWB baseband receivers working in parallel. It combines high speed measurements with excellent signal and timebase stability.

Configuration options

- Two stimulus lengths
 - MLBS9: 511 M-sequence chips
 - MLBS12: 4095 M-sequence chips
- Two clocking/bandwidth options
 - 13.312 GHz system clock | 6 GHz bandwidth in baseband
 - 10.240 GHz system clock | 4 GHz bandwidth in baseband

RF properties

UWB baseband transmitter:

- UWB pseudo-noise signal
 - no high voltage peaks: $0.8 V_{pp}$ max. 0
 - low field strength operation (when connected to antennas) \circ
 - low crest factor / PAPR: CF \approx 2.6 typ. (PAPR \approx 8.3 dB) 0
- extremely stable generation driven by phase locked RF system clock
- instantaneous 10 dB bandwidth
 - 0.1 6 GHz (@13.312 GHz system lock)
 - 0.1 4 GHz (@10.240 GHz system lock) 0
- Ambiguity time and range: (1-way range in air)
 - MLBS9 / 13.312 GHz: $T_{amb} \approx 38.4 \text{ ns}$ $R_{amb} \approx 11.5 \text{ m}$
 - MLBS9 / 10.240 GHz: $T_{amb} \approx 49.9 \text{ ns}$ $R_{amb} \approx 15.0 \text{ m}$
 - MLBS12 / 13.312 GHz: $T_{amb} \approx 307.6 \text{ ns}$ $R_{amb} \approx 92.3 \text{ m}$ 0
 - MLBS12 / 10.240 GHz: $T_{amb} \approx 399.9 \text{ ns}$ $R_{amb} \approx 120.0 \text{ m}$ 0
- total output power: ca. -7 dBm ٠
- SMA-Female Tx RF-port:
- output power-down feature (software controlled)

UWB baseband receivers:

- 2 coherent Rx working in parallel
- continuous, synchronous sub-sampling operation: 1:512 pre-scaler
- UWB analogue input bandwidth: •
 - 0.1 6 GHz (@13.312 GHz system lock)
 - 0.1 4 GHz (@10.240 GHz system lock)
- input 1 dB compression point:
- system performance:
 - MLBS9:
 - MLBS12: 0
 - Tx output power referred to Rx noise floor at maximum integration time
 - can be extended by external amplifiers
- instantaneous dynamic range: $> 135 \, dB(s)$
 - measured from P1dB to receiver noise floor with 1 s integration time
- extremely stable timebase derived from transmitter clock:
 - < 20 fs (rms) timebase iitter:
- **RF-ports: SMA-F**

Resolution and accuracy:

 \circ

- Measurement setup: $Tx \rightarrow SMA$ cable $\rightarrow 20$ dB $\rightarrow SMA$ cable $\rightarrow Rx$ •
- Resolution: pulse width 2-way resolution air • 3 dB @13.312 GHz: 117.4 ps 17.6 mm
 - 10 dB @13.312 GHz: 207.8 ps 31.2 mm
- Random variation of pulse delay (1000 repetitions@maximum measurement speed)
 - 13.312 GHz: σ_{del} ≈ 10.7 fs (rms) σ_R ≈ 1.6 μm

 $P_{1dB} \approx -14 \text{ dBm}$

≈ 155 dB ≈ 164 dB

Digital backend

- USB2.0 High-speed interface
- USB-B socket
- integrated buffer memory: 128 MBytes
- configurable measurement timing
 - synchronous averaging to improve SNR
 - wait cycles to balance measurement rate and averaging aperture
- measurement speed:
 - \circ MLBS9 / 13.312 GHz: MR_{max} ≈ 1038 measurements / s
 - MLBS9 / 10.240 GHz: $MR_{max} \approx 799$ measurements / s
 - MLBS12 / 13.312 GHz:
 MR_{max} ≈ 130 measurements / s
 - MLBS12 / 10.240 GHz:
 MR_{max} ≈ 100 measurements / s
 - Actual max. speed depends on capabilities of control computer
 - Optional increased measurement speed upon request (* consult factory)
- digital correlation in control computer to suppress noise

Dimensions and power supply

- Dimensions (WxDxH): 115 mm x 215 mm x 55 mm
- Power supply rating : DC +12 V, 1 A
- Operating temp. range: 0 .. +35°C (< 90% rel. humidity, non-condensing)
- Storage temp. range : -10.. +60°C (< 90% rel. humidity, non-condensing)
- convection/active cooling by integrated fan

Software

- MatLab support (Windows[™] 7, 8.1, 10):
 - MEX-API for device control and data transfer with demonstration code
 - GUI for easy measurements and continuous data storage
 - Programming interface via dynamic library: HAL API
 - Support for Windows[™] 7, 8.1, 10 on x32 and x64 architectures
 - Support for Debian[™] and Ubuntu[™] Linux on x32, x64, and armhf architectures

Contact

Ilmsens GmbH Ehrenbergstr. 11 98693 Ilmenau

www.ilmsens.com info@ilmsens.com

+49 3677 76130 30